Diferenças entre edições de "Utilizador:NunoOliveira"

Fonte: DEQWiki
Saltar para a navegação Saltar para a pesquisa
m
 
(Há 19 edições intermédias do mesmo utilizador que não estão a ser apresentadas)
Linha 1: Linha 1:
Uma página inicial de teste.
$\newcommand{\Re}{\mathrm{Re}\,}
\newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}$
Teste onde <math>x</math> é definido por:


<br />
<math>\begin{align}
\dot{x} & = \sigma(y-x) \label{eq:1}\\
\dot{y} & = \rho x - y - xz \\
\dot{z} & = -\beta z + xy
\end{align}</math>

Equation \eqref{eq:1} above. We consider, for various values of $s$, the $n$-dimensional integral
\begin{align}
\label{def:Wns}
W_n (s)
&:=
\int_{[0, 1]^n}
\left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x}
\end{align}
which occurs in the theory of uniform random walk integrals in the plane,
where at each step a unit-step is taken in a random direction. As such,
the integral \eqref{def:Wns} expresses the $s$-th moment of the distance
to the origin after $n$ steps.

By experimentation and some sketchy arguments we quickly conjectured and
strongly believed that, for $k$ a nonnegative integer
\begin{align}
\label{eq:W3k}
W_3(k) &= \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}.
\end{align}
Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers.
The reason for \eqref{eq:W3k} was long a mystery, but it will be explained
at the end of the paper.

Edição atual desde as 22h21min de 9 de abril de 2019

Uma página inicial de teste.