Diferenças entre edições de "Teste/math"

Fonte: DEQWiki
Saltar para a navegação Saltar para a pesquisa
 
Linha 51: Linha 51:


Algum texto final.
Algum texto final.
[[Ficheiro:Figura 10..png|alt=Evaporador|miniaturadaimagem|Legenda por baixo.]]
[[Ficheiro:Figura 10..png|alt=Evaporador|miniaturadaimagem|Legenda por baixo.|nenhum]]
<br />
<br />
[[Categoria:Teste]]
[[Categoria:Teste]]

Edição atual desde as 23h30min de 17 de abril de 2019

$\newcommand{\Re}{\mathrm{Re}\,} \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}$ Teste onde <math>x</math> é definido por:

Falhou a verificação gramatical (MathML, com SVG ou PNG em alternativa (recomendado para navegadores modernos e ferramentas de acessibilidade): Resposta inválida ("Math extension cannot connect to Restbase.") do servidor "https://wikimedia.org/api/rest_v1/":): {\displaystyle \begin{align} \dot{x} & = \sigma(y-x) \label{eq:1}\\ \dot{y} & = \rho x - y - xz \\ \dot{z} & = -\beta z + xy \end{align}}

Equation \eqref{eq:1} above. \begin{equation} \label{eq:aa} x = y^2 \end{equation} Equation \eqref{eq:2} here.

We consider, for various values of $s$, the $n$-dimensional integral which occurs in the theory of uniform random walk integrals in the plane, where at each step a unit-step is taken in a random direction. As such, the integral \eqref{def:Wns} expresses the $s$-th moment of the distance to the origin after $n$ steps.

Secção adicional

By experimentation and some sketchy arguments we quickly conjectured. Insert picture:

Gato deitado
Legenda da imagem.


strongly believed that, for $k$ a nonnegative integer \begin{equation}

 \label{eq:W3k}
 W_3(k) = \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}.

\end{equation} Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers. The reason for \eqref{eq:W3k} was long a mystery, but it will be explained at the end of the paper.

$\ce{HCl}$ dissociates in water as follows: $$\ce{H2O + HCl <=> H3O+ + Cl-}$$.

A equação que define $x$ é a seguinte, onde $x = a^2 + b_2$: \[ x = \frac{a+b}{c} + \sum_{i=1}^{n} B_i \alpha \beta \gamma \phi_k \]

Uma frase de teste[1]. Uma ligação a integração de processos. Mais referências.[2]

Bibliografia recomendada:

  1. J. Pinto, Livro de texto, Coimbra Editora (2017).
  2. I.C. Kemp, Pinch Analysis and Process Integration, A User Guide on Process Integration for the Efficient Use of Energy, 2.a edição, Butterworth-Heinemann, Amsterdam, (2007).

Algum texto final.

Evaporador
Legenda por baixo.