Diferenças entre edições de "Teste/math"

Fonte: DEQWiki
Saltar para a navegação Saltar para a pesquisa
Linha 9: Linha 9:
\end{align}</math>
\end{align}</math>


Equation \eqref{eq:1} above. We consider, for various values of $s$, the $n$-dimensional integral
Equation \eqref{eq:1} above.
\begin{equation}
\label{eq:aa}
x = y^2
\end{equation}

We consider, for various values of $s$, the $n$-dimensional integral
\begin{align}
\begin{align}
\label{def:Wns}
\label{def:Wns}

Revisão das 21h30min de 9 de abril de 2019

$\newcommand{\Re}{\mathrm{Re}\,} \newcommand{\pFq}[5]{{}_{#1}\mathrm{F}_{#2} \left( \genfrac{}{}{0pt}{}{#3}{#4} \bigg| {#5} \right)}$ Teste onde <math>x</math> é definido por:

Falhou a verificação gramatical (função desconhecida: "\label"): {\displaystyle \begin{align} \dot{x} & = \sigma(y-x) \label{eq:1}\\ \dot{y} & = \rho x - y - xz \\ \dot{z} & = -\beta z + xy \end{align}}

Equation \eqref{eq:1} above. \begin{equation} \label{eq:aa} x = y^2 \end{equation}

We consider, for various values of $s$, the $n$-dimensional integral \begin{align}

 \label{def:Wns}
 W_n (s)
 &:= 
 \int_{[0, 1]^n} 
   \left| \sum_{k = 1}^n \mathrm{e}^{2 \pi \mathrm{i} \, x_k} \right|^s \mathrm{d}\boldsymbol{x}

\end{align} which occurs in the theory of uniform random walk integrals in the plane, where at each step a unit-step is taken in a random direction. As such, the integral \eqref{def:Wns} expresses the $s$-th moment of the distance to the origin after $n$ steps.

Secção adicional

By experimentation and some sketchy arguments we quickly conjectured and strongly believed that, for $k$ a nonnegative integer \begin{equation}

 \label{eq:W3k}
 W_3(k) = \Re \, \pFq32{\frac12, -\frac k2, -\frac k2}{1, 1}{4}.

\end{equation} Appropriately defined, \eqref{eq:W3k} also holds for negative odd integers. The reason for \eqref{eq:W3k} was long a mystery, but it will be explained at the end of the paper.

$\ce{HCl}$ dissociates in water as follows: $$\ce{H2O + HCl <=> H3O+ + Cl-}$$.

A equação que define $x$ é a seguinte, onde $x = a^2 + b_2$: \[ x = \frac{a+b}{c} + \sum_{i=1}^{n} B_i \alpha \beta \gamma \phi_k \]

Uma frase de teste[1]. Uma ligação a integração de processos. Mais referências.[2]

Bibliografia recomendada:

  1. J. Pinto, Livro de texto, Coimbra Editora (2017).
  2. I.C. Kemp, Pinch Analysis and Process Integration, A User Guide on Process Integration for the Efficient Use of Energy, 2.a edição, Butterworth-Heinemann, Amsterdam, (2007).

Algum texto final.