Turbinas eólicas

Fonte: DEQWiki
Revisão em 16h07min de 17 de abril de 2019 por AntonioFigueiredo (discussão | contribs) (Primeira edição, a gravar as primeiras alterações. Acrescentou-se o Wind Power Density, a Eficiência e Principios de Funcionamento.)
Saltar para a navegação Saltar para a pesquisa

Turbinas eólicas

As turbinas eólicas, ou aerogeradores, são equipamentos capazes de converter a energia cinética do ar (que se desloca devido às diferenças de pressão atmosférica terrestre, causadas por diferenças de temperatura na superfície terrestre – é uma energia derivada da solar em energia elétrica – utilidade usada em praticamente todas as ações industriais e do quotidiano. As turbinas eólicas são compostas por pás, como um cata-vento, que o vento faz girar, convertendo a energia cinética deste em energia mecânica. As pás estão ligadas a um eixo que, por sua vez, está ligado a um gerador, sendo nele que é feita a conversão de energia mecânica em energia elétrica. As turbinas são geralmente instaladas na forma de parques eólicos, com vários aerogeradores de grandes dimensões.

A energia gerada pelas turbinas eólicas depende da densidade do ar, da área das pás e principalmente da velocidade do vento – a energia potencial da turbina depende do cubo da velocidade do vento perpendicular às pás–. A energia máxima passível de ser retirada do vento com aerogeradores está limitada 59.3% (16/27). Este valor foi determinado pelo físico alemão Albert Betz, e é chamado limite ou lei de Betz.

Por esta razão os parques eólicos são geralmente instalados em zonas ventosas, onde o potencial eólico é maior, sobre torres elevadas (onde o vento não é tão afetado pelo relevo do solo). Os aerogeradores podem também ser instalados no mar, onde a presença de vento é mais regular. Normalmente só é adequado fazer parques eólicos para velocidade de vento superiores a 4 m/s, permitindo assim classificar as turbinas através do parâmetro .WPD (Wind Power Density).

Estas turbinas são responsáveis pela produção de energia elétrica a partir de fontes renováveis, não poluentes e que reduzem a dependência de combustíveis fosseis.


Wind Power Density (WPD) [1]

O WPD trata-se de uma medida quantitativa da energia eólica disponível numa região, determinada através da média anual de energia disponível por metro quadrado. Este parâmetro permite classificar as turbinas eólicas, numa escala de I a III, consoante a velocidade média do vento para a qual foram projetadas, indicando ainda a intensidade da turbulência suportadas, através das letras A, B e C.

Classificação das turbinas eólicas consoante a velocidade média do vento
Class Avg Wind Speed (m/s) Turbulence (%)
IA 10 16
IB 10 14
IC 10 12
IIA 8.5 16
IIB 8.5 14
IIC 8.5 12
IIIA 7.5 16
IIIB 7.5 14
IIIC 7.5 12


Constituição

Os aerogeradores têm vários componentes. Os componentes fundamentais são o eixo ou rotor, um gerador elétrico e respetivo sistema de controlo, e a torre de suporte. O rotor é o componente destinado a converter a energia cinética do vento em energia mecânica, e pode ser de 2 tipos. Dependendo do tipo de rotor têm-se 2 aerogeradores diferentes. Este equipamento engloba também as pás, que podem ser de madeira, alumínio, aço, fibra de vidro, fibra de carbono e/ou Kevlar™. A área das pás é fundamental na quantidade de energia que o aerogerador consegue produzir. O rotor pode rodar sobre o seu próprio eixo, mas permite também que o plano das pás faça um certo ângulo com a horizontal, adaptando-se à direção do vento. As pás também podem rodar ligeiramente sobre o seu próprio eixo.

O gerador é o elemento responsável pela conversão da energia mecânica em energia elétrica.


Princípios de Funcionamento

A transformação da energia fornecida pelo vento em energia elétrica dá-se a partir da força aerodinâmica criada pelas pás do rotor. Quando a corrente de ar circula através destas, a pressão em um dos lados das pás diminui, originando uma driving-force que causa um efeito de arrastamento e elevação das pás. Como a força de elevação é superior à de arrastamento, o rotor começa a girar, e, estando conectado a um gerador (direta ou indiretamente), permite que este transforme a energia mecânica em energia elétrica. [2]

Nas turbinas eólicas mais antigas, o gerado encontra-se ligado indiretamente ao rotor, através de condutas e de uma caixa de transmissão (gearbox). Nestes casos, os rolamentos e engrenagens existentes na gearbox estão sujeitos a tensões extremas, derivadas da turbulência do ar, tornando a manutenção deste componente da turbina uma tarefa frequente e de elevada importância. Em turbinas mais recentes, a ligação entre o rotor e o gerador é feita diretamente, removendo os componentes anteriormente mencionados, o que a torna mais confiável em termos de desempenho. No entanto, utilizando este método de conexão, existem problemas associados ao custo e ao peso do gerador, uma vez que se utilizam geradores de alta velocidade. [3]


Tipos de turbinas

Eixo Horizontal (HAWT)

São o tipo de turbinas eólicas mais comuns e, como o nome indica, o eixo encontra-se na posição horizontal. No mesmo plano estão o rotor, gearbox e gerador, posicionados no topo da torre. As HAWT têm como principal desvantagem o facto de as pás terem de estar apontadas na direção do vento. A regulação da sua posição é feita automaticamente por computadores com recurso a sensores. As pás são posicionadas de forma estratégica para evitar problemas que possam surgir com a grande turbulência gerada, são colocadas por exemplo contra o vento e a uma determinada distancia, na frente da torre, para o caso das pás se inclinarem com a turbulência. As HAWT são as que mais energia produzem, visto que as pás estão na perpendicular à direção do vento e todas trabalham. Nos grandes parques eólicos são frequentes as turbinas de 3 pás que são as que melhor conseguem conciliar a velocidade das pás com a estabilidade da estrutura. A maior altura e comprimento das pás favorece a geração de energia. Os grandes custos iniciais e de manutenção, são as suas principais desvantagens.

Eixo Vertical

O eixo rotacional encontra-se na posição vertical, perpendicular ao solo. Neste género de turbinas destacam-se as do tipo Savonius e Darrieus, as quais funcionam a partir de forças de arrasto e de sustentação, respetivamente. Estas possuem o gerador e a gearbox na base da turbina, junto ao solo, o que é um fator vantajoso para a sua acessibilidade e manutenção. Umas das principais características destas turbinas é a sua independência em relação à direção do vento, não necessitando de mecanismos para apontar as turbinas ou de pitch, permitindo também a sua instalação em locais onde a direção do vento não é constante. A sua integração em edifícios também é possível. Fácil instalação e transporte são outras das vantagens.

As suas desvantagens prendem-se com as suas baixas velocidades de rotação, baixas eficiências, já que apenas uma lamina trabalha (em comparação com HAWT onde todas contribuem para a geração elétrica) e necessidade de um impulso inicial.


Eficiência [1]

De acordo com o princípio da conservação da massa, a quantidade de ar que entra na turbina tem de ser igual à que sai da mesma, limitando a eficiência das mesmas a 59,3% da energia cinética total associada ao ar circulante. Este valor foi obtido através da equação de Bertz, que traduz a máxima potência que é possível obter a partir de uma corrente de ar.

Assim, considerando a eficiência máxima e a equação que traduz a energia cinética, e sabendo a velocidade do ar, var, e a sua densidade, ρar, a potência máxima que pode ser obtida numa turbina eólica é dada por:

Equação que permite determinar a potência de um aerogerador

Sendo A a área efetiva do rotor. Há, ainda, outros fatores que afetam o valor final da potência, entre os quais a fricção entre as pás da turbina, e ainda perdas na conversão de energia cinética em energia mecânica, associadas ao rotor.


Vantagens e desvantagens

Comparação entre turbinas de eixo horizontal e vertical. Fonte:http://www.windturbinestar.com/hawt-vs-vawt.html

As principais vantagens do uso de energia proveniente das turbinas eólicas são o facto de serem de uma fonte renovável e não poluente. Existem outras vantagens que estão relacionadas direta ou indiretamente com o uso das turbinas eólicas, tais como:

-       Diminuição da dependência de combustíveis fósseis;

-       Diminui a emissão de gases de efeito de estufa;

-       Criação de emprego;

-       Principais desvantagens:

-       Dependência da presença de vento;

-       Poluição visual e sonora;

-       Podem afetar o ecossistema de algumas aves;

-       Podem causar erosão no solo.

Produção de eletricidade por fonte em Portugal, 2017. Fonte:http://www.apren.pt/pt/dadostecnicos/index.php?id=1147&cat=266

Situação em Portugal

Atualmente Portugal produz mais de 5 GW de energia eólica, constituindo 22% da produção elétrica em Portugal. Em 2013 ocupava a sétima posição no ranking de produção de energia eólica na Europa.

Energia eólica começou a ser produzia em Portugal em 1986 com a criação do primeiro parque eólico na ilha de Porto santo, e em Portugal continental em 1992 no parque eólico de Sines. Em 2013 Portugal tinha já mais de 2500 aerogeradores, sendo Viseu o distrito que mais energia eólica produz.

Referências

http://pt.hidroerg.pt/energia-eoacutelica.html

https://www.palpitedigital.com/como-funcionam-turbinas-eolicas-geracao-energia/

https://pt.wikipedia.org/wiki/Aerogerador

https://evolucaoenergiaeolica.wordpress.com/aerogerador-de-eixo-horizontal/

http://www.solar.coppe.ufrj.br/eolica/eol_txt.htm

http://www.green-mechanic.com/2013/03/horizontal-axis-wind-turbine.html

http://www.green-mechanic.com/2013/03/vertical-axis-wind-turbine.html


Realizado por: Inês Inocêncio e Telmo Rodrigues, no âmbito da disciplina de Integração e Intensificação de Processos, pertencente ao Mestrado Integrado em Engenharia Química (Departamento de Engenharia Química, Faculdade de Ciências e Tecnologia da Universidade de Coimbra, 2016/2017).

  1. 1,0 1,1 Autor Desconhecido. (s.d.). Turbinas Eólicas (Wikipédia). Wikipédia. Consultado em 19 de fevereiro de 2019
  2. Autor Desconhecido. (s.d.). How Do Wind Turbines Work?. Office of Energy & Renewable Energy. Consultado em 19 de fevereiro de 2019.
  3. Lindsay Morris. (2011). Direct Drive vs. Gearbox: Progress on Both Fronts. Power Engineering. Consultado em 19 de fevereiro de 2019.